連関資料 :: 実験
資料:322件
生化学実験 ビタミンの定性反応?
◎ビタミンの定性反応の実験技術を習得する。
ビタミンC(アスコルビン酸)
※使用するビタミンC溶液の濃度が、実験1〜3で違うことに注意して操作すること。
実験1.α、α1-ジピリジル法
ビタミンC(アスコルビン酸)水溶液(50μg/ml)2.0mlに発色試薬2.5mlを加えて、溶液の色調を観察する。
実験2.
2本の試験管(A、B)にビタミンC(アスコルビン酸)水溶液(20mg/ml)5mlずつをとり、試験管Aに過マンガン酸カリウム試液1滴を、また試験管Bには2、6-ジクロルフェノールインドフェノールナトリウム試液1〜2滴を滴下するとき、いずれも試液の色は直ちに消える。
実験3.
ビタミンC(アスコルビン酸)溶液(ビタミンC0.1gを20mg/mlメタリン酸水溶液100mlに溶かした液)5mlをとり、液がわずかに黄色を呈するまでN/10ヨウ素溶液10滴加えた後、0.1%硫酸銅水溶液1滴およびピロール1滴を加え、50℃で2分間加熱するとき、液は青色を呈する。
ビタミンD2(エルゴカルシフェロール)
Liebermann-Burchard反応
ビタミンD2(エルゴカルシフェロール)のクロロホルム溶液(0.1mg/ml)5mlに、無水酢酸0.3mlおよび硫酸0.1mlを加えて振り混ぜるとき、液は赤色を呈し、直ちに紫色および青緑色を経て緑色に変わる。
ビタミンE(トコフェロール)
※今回、ビタミンEの定性反応については行わなかった。
ビタミンE(トコフェロール)の無水エタノール溶液(1mg/ml)10mlに硝酸2mlを加え、75℃で8〜10分間加熱するとき、液は赤色〜だいだい色を呈する。
ビタミンK1(フィトナジオン)
※実験1と2で、使用するビタミンK1溶液の濃度が異なるので注意して操作すること。
レポート
生化学
脂溶性ビタミン
定性反応
生体内
抗酸化作用
550 販売中 2005/07/16
閲覧(12,185)
生化学実験 糖の定性反応
◎今回使用した糖液(キシロース、グルコース、フルクトース、ラクトース、スクロース、デンプン)について以下にまとめた。
モーリッシュ(Molisch)反応
?3本の試験管(A〜C)のうち、A管にグルコース液、B管にスクロース液、C管にはデンプン液をそれぞれ2mlずつとる。それぞれの試験管に5%α−ナフトール・エタノール溶液2滴を加えて混和したのち、濃硫酸1mlを管壁にそって静かに流し込む。混ぜないように。
?液は二層になり、硫酸との界面は赤紫色を呈する。
ベネジクト(Benedict)反応
?3本の試験管(A〜C)にベネジクト試薬2mlをそれぞれとる。
?A管にグルコース液、B管にラクトース液、C管にスクロース液をそれぞれ0.5mlずつ加え、
沸騰水浴中で約2分間加熱する。
ニーランデル(Nylander)反応
?3本の試験管(A〜C)のうち、A管にグルコース液、B管にラクトース液、C管にはスクロース液をそれぞれ2mlずつとる。
?それぞれの試験管にニーランデル試薬0.5mlを加え、沸騰水浴中で軽く振り混ぜながら7〜8分加熱する。
ビアール(Bial)反応
?2本の試験管(A、B)にビアール試薬1mlをそれぞれとる。
?A管にキシロース液、B管にグルコース液をそれぞれ0.5mlずつ加え、混合し、沸騰水浴中で加熱する。
?反応液の色調を比較する。
セリワノフ(Seliwanoff)反応
?3本の試験管(A〜C)にセリワノフ試薬3mlをそれぞれとる。
?A管にスクロース液、B管にフルクトース液、C管にはグルコース液をそれぞれ0.5mlずつ加え、沸騰水浴中に入れ、呈色までの時間を観察する。
レポート
キシロース
グルコース
フルクトース
ラクトース
スクロース
550 販売中 2005/07/16
閲覧(56,520)
制御工学実験 報告書
1. 実験の目的
本実験では,振動工学における基本的な「1自由度振動系」を取り扱う。先端に集中質量を持った振り子(単振り子)を模した実験装置を用いて,その振動特性を把握することを目的とする。特に,固有振動数を求め,数値計算と実験結果との比較を行う。また、実験全体を通して制御工学や機械振動学への理解を深め、今後の講義等に役立てるようにする。
2.実験の背景(機械工学との関係)
振動と制御は,裏腹の関係にある。機械装置にとって,振動現象はなるべく発生させたくないものである。例えば,自動車や航空機などの乗り心地に影響を及ぼすし,騒音の原因ともなる。高速回転するような装置の場合,破壊に至る場合もある。ロボットアームなど高速駆動したい場合,その振動によって位置決め精度が劣化する。また,情報機器装置などの精度向上にも振動の影響を考慮する。このように,機械装置の振動と制御には密接な関係があるため,制御対象の振動特性を把握することは非常に重要である。特に共振振動数(固有振動数)はどのくらいか,制御したい周波数帯域の振動特性はどうなっているか,振動の発生原因は何なのか,どのようにしたら抑えられるのかなど制御系の設計時に非常に有効な情報となる。今回は,単振り子の振動系を例に振動の基礎を理解することを実験の目的とする。
3.実験の基礎理論
本実験において、図1 に示すように,全質量m [kg] が原点から長さl [m]の距離に集中していると仮定される振り子を考える。その運動は,1平面内に限られるものとする。
特に振り子の回転角度θが十分小さいとき,振り子の運動方程式は,次の微分方程式に近似されることが知られている。
レポート
理工学
ブランコ
制御
自由度
伝達関数
550 販売中 2006/04/16
閲覧(3,314)
機械工学実験 報告書
オリフィスを利用し、圧縮性流体の熱力学的状態変化について理解する。オリフィス特性から基礎的ノズル理論を把握する。
2. 理論
図1に示すようにオリフィス(先細ノズル)中の完全ガス1次元流れとする。
? 可逆断熱変化の場合(Pvκ=Const)
エネルギー保存の法則より
(1)
(2)
w1/w2
論文
理工学
熱
圧縮
オリフィス
流体
基礎
550 販売中 2006/04/16
閲覧(3,342)
オシロスコープを使った基本的な実験
(Ⅰ-1)
オシロスコープを使った基本的な実験
実験報告書(3班)
再提出版
実験日 10月30日 11月6日 11月8日
1.実験の目的
プローブの内部構造・動作原理をしり、プローブの正しい使い方を検討した。また、オシロスコープのX-Yモードを用いて、リサージュ図形から入力波と出力波の電圧比、位相差の求め方を検討した。微分回路・積分回路の周波数特性を検討し、トロイダルコアのB-Hカーブの測定を行った。
2.実験回路解析と実験方法
2.1 プローブの動作原理(実験1)
a.実験回路の理論解析
(1.1)伝達関数を求める
C1、R1、C2、R2、C3に流れる電流をそれぞれi1、i2、i3、i4、i5とする
また、C1、R1にかかる電圧をV1とする
これらの式をラプラス変換すると、
・・・①
これらを①式に代入すると
よって、伝達関数 は
(1.2) 周波数伝達関数 は
周波数応答 は
位相差は
より、
C2の調整が正しく行われたときのボード線図は次項に示す
(1.3) ステップ電圧印加の の波形を示せ
次にステップ電圧印加
とおき、逆ラプラス変換して
ここで はステップ関数なので
voの波形は次のようになる
KTのとき
特にK=Tのとき
(1.4) に波形歪みが生じないためには
より
となればいいから
を満たす必要がある。
b.実験回路の詳細と実験方法
使用器具
オシロスコープ(KENWOOD 40MHz CS-4035)
発振機(KENWOOD AG-203D)
10:1プローブ(KENWOOD 960BNC 10:1)
実験方法
まず、オシロスコープ内蔵の校正電源で発生させた方形波をプローブに加えて表示させ、方形波の頭部が平坦になるようにC2を調節する。このことによって、入力と出力の位相差をなくし、以降の測定を正確に行える。
次に、プローブの先端に方形波を入力し、ステップ電圧のかわりとする。オシロスコープの波形表示モードをALTにし、波形を観測する。
c.実験結果
写真はCH2の波形、1V/div 0.5ms/div
d.理論と結果の比較
実験結果のグラフをみると、ステップ電圧の頭部が平坦に表れている。
これは、voの理論式でK=Tとなった場合と同じである。
つまり、C2の調節が正しく行われたことを示している。
2.2 リサージュ波形(実験2)
a.実験回路の理論解析
x軸方向に (入力)、y軸方向に (出力)を印加する
・・・①
加法定理より
・・・②
①を②に代入すると
・・・③
に①と③を代入すると
両辺sin2φをかけて
・・・④
④の式がリサージュ図形の式にあたる
は図形から最大振幅値を読み取ることで求まる
より
振幅比は
④式から のとき
より
図形をみると X=0のとき Y=B
よって より
位相差は
今回のオシロスコープの場合、入力と出力の方向が逆なので
振幅比は
位相差は
b.実験回路の詳細と実験方法
使用器具
オシロスコープ(KENWOOD 40MHz CS-4035)
発振機(KENWOOD AG-203D)
10:1プローブ(KENWOOD 960BNC 10:1) 2本
コンデンサ 1μF
抵抗 2kΩ
実験方法
交流電源Viの周波数を100Hzにする。
CH1を水平方向、CH2を垂直方向に入力し、X-Yモードにてリサージュ波形を観測する。
c.実験結果
X軸:1mV/div
レポート
理工学
オシロスコープ
微分回路
積分回路
トロイダルコア
リサージュ
550 販売中 2007/04/22
閲覧(18,225)
実験 レポート(Diels-Alder)(up)
<結果>
(収量と収率)
(試料2の融点測定)
融解開始温度:182℃
融解終了温度:186℃ 文献値:175℃
(試料4のTLC)
(Rf値)
[0 min]
① 0.46
② 0.46
③ 0.46
[45 min]
① 0.41
② 0.20 0.41 0.59
③ 0.06 0.41 0.59
[15 min]
① 0.5
② 0.5
③ 失敗
[60 min]
① 0.44
② 0.06 0.44 0.59
③ 0.06 0.44 0.59
[30 min]
① 0.35
② 0.06 0.35 0.65
③ 0.09 0.35 0.65
<考察>
(1日目の実験)
試料1から試料2を生成する際、収率がわずか66.6%であった。この原因の一つは吸引濾過の段階だろう。ろ紙についた試料をうまくとれない、試料をブフナー漏斗に移す際に容器に試料が残ってしまうことが考えられる。これは試料をブフナー漏斗に移す際に、水で試料を溶解する回数を増やすこと、吸引濾過の回数を増やすことで改善ができる。
しかしながら一番の原因は加熱還流中にリービッヒ冷却管とナス型フラスコがしっかり結合されていなかったことだろう。そのため蒸発した試料の一部が隙間から系外に逃げてしまったと考えられる。この点は2日目の実験でTAに指摘されたため、2日目の実験では改善されている。
試料1に対する実験では、試料1が水分子によって開環する反応が起こると考えられる。
試料2は白色針状結晶であった。
この試料2と推測される物質は融点が175℃であるので、融点測定の結果とも矛盾がない。
(2日目の実験)
試料2を秤量し直すと、2.6gしかなかったので、38班から0.34g補充して実験を行った。試料2に対する実験では濃硫酸を触媒とするメタノールとのエステル化反応が起こると考えられる。
この反応は脱水反応なので、系に水が存在すると反応が阻害され、試料4→試料2の逆反応が生じてしまう。そのために、加熱還流の際にリービッヒ冷却管の上部に塩化カルシウム管を取り付けた。塩化カルシウムは脱水剤である。しかしながら、塩化カルシウムは連続して用いることができないので学生実験には不適である。そのため、今回は沸石を代わりに用いたが、水は完全に遮断できないので、どうしても試料2が残ってしまう。
加熱還流の後に、水とエーテルを加えて分液して、水層を除去した。水層には残ったメタノールと硫酸の反応物硫酸ジメチルや硫酸が僅かに溶けているからである。その後、残った有機層にNaHCO3を加えて水層を除去した。水層には、試料2のナトリウム塩と硫酸ナトリウムが溶けているからである。そしてMgSO4で水分を除去した後、濾過した。濾過液をエバポレーターで減圧蒸留し、残ったメタノールを除去する。そして乾燥したフラスコで秤量する。水分を極力入れない理由は次の反応でも水が反応を阻害するからでもある。濾過時に少しこぼしてしまったので、本来ならもう少し収率は高かったのかもしれない。
試料4に対する実験では、ナトリウムメトキシドが塩基として試料4のα水素(カルボニル基に隣接した炭素上の水素)を攻撃することでケト-エノール平衡が移動し、異性化が起きる、つまりエンド型からエキソ型に変わる。
しかしながら2箇所ともエキソ型に変わると立体障害のために不安定になるので、片方のみ反応は進行すると考えられる。また、この反応は平衡反応であるので反応物もある程度残ると思われる。基本的にエキソ型よりエンド型の方が安定なので、その量は少なくないと考えられる
有機実験
ディールスアルダー反応
TLC
構造式多用
東工大
全体公開 2008/04/14
閲覧(11,211)
新しくなった ハッピーキャンパスの特徴
写真のアップロード
ハッピーキャンパスに写真の アップロード機能ができます。 アップロード可能なファイルは:doc .ppt .xls .pdf .txt .gif .jpg .png .zip
一括アップロード
一度にたくさんの資料のアップロードが可能です。 資料1件につき100MBまで、資料件数に制限はありません。
管理ツールで資料管理
資料の中から管理したい資料を数件選択し、タグの追加などの作業が可能です。
資料の情報を統計で確認
統計では販売収入、閲覧、ダウンロード、コメント、アップロードの日別の推移、アクセス元内訳などの確認ができます。
資料を更新する
一度アップロードした資料の内容を変更したり、書き加えたりしたい場合は、現在アップロードしてある資料に上書き保存をする形で更新することができます。
更新前の資料とは?
一度アップロードした資料を変更・更新した場合更新前の資料を確認することができます。
履歴を確認とは?
資料のアップロード、タイトル・公開設定・資料内容説明の変更、タグの追加などを期間指定で確認することができます。