日本最大のレポートサイト HAPPYCAMPUS

検索オプション
  • 私のホーム
  • 私の資料
  • 私のMEMO
  • 資料広場
  • アップロード

連関資料 :: 実験

資料:324件

  • 心理学実験法についてまとめ、自分の問題意識に沿った実験のテーマや方法について考察しなさい
  • 心理学実験法についてまとめ、自分の問題意識に沿った実験のテーマや方法について考察しなさい 心理学実験の利点は、さまざまな測定を試みることにより、1つの現象に対し、多方面からの分析が可能であることや事象の客観的な測定が可能なこと、問題となる変数の効果の有無を客観的に決定できることも利点として挙げられる。また、自然環境では発生しにくい環境も人為的に作ることが可能であったり、実験結果を変える可能性のある要因をコントロールできること、測定を繰り返すことにより、研究結果の信頼性・一般性を高めることが可能なことなども利点として挙げられる。 しかし、これらのような利点は人為的で制御が利くために、被験者の自然な行動を望みにくいことや測定という行為のために、実験結果を変化させてしまうこともある。つまり、実験の利点と欠点は表裏一体であるため、実験の利点と欠点を一緒に考慮して、研究を進めなくてはならない。 また、実験の目的は、現象の原因と考えられる条件を明確にすることである。 1.実験の計画 まず、仮説を立てる。仮説は、先行研究や日常行動の観察・疑問、類推、理論からの演繹などから生まれる。この仮説をもとに、原因と思われる条件を独立変数とし、これにより、変化すると考えられる現象を従属変数とする。 仮に、独立変数以外にも結果を変化させる変数、つまり、剰余変数があれば、これを取り除き、独立変数のみの結果を出さなければならない。このような場合には、独立変数を含まない条件でもう一群の被験者(対象群、統制群)を用いて実験を行い、剰余変数の寄与を測定し、実験群の結果から除去すればよい。 独立変数は、1種類であるとは限らない。ゴッデンとバッドリーが、記憶の再生には相互作用があるということを実証するため、学習環境を2種類(陸と海)用意し、再生環境も2種類(陸と海)用意した。つまり、この実験では被験者一人において、陸―陸、陸―海、海―海、海―陸問といった4種類の実験が行われたのである。その結果、陸で記憶したことは、陸で再生した際には13.5で合ったのに対し、海で再生した際には8.4と陸での方が成績が高く、海の記憶に関しては、陸での再生は8.6であったのに対し、海での再生の場合は11.4と海での再生の方が成績が良かった。 この結果から、陸での記憶と海で記憶は互いに独立に存在すると考えられる。つまり、この実験では独立変数を2種類用いてそれらの間の相互作用を証明したと考えることが可能である。 2.実験方法 剰余変数を統制しやすくするために、実験に用いる用具や環境は簡単に整備できるものにした方が良い。しかし、先にも述べたように、人為的な条件下では、現実とは異なった結果が生じてしまう可能性があることも留意しなくてはならない。 また、被験者の選択であるが、結果を一般化するためには、被験者の背景にどのような母集団があるのかを想定し、被験者はその母集団を正しく反映しているかどうか考慮しなくてはならない。 例えば、被験者として大学生のボランティアを募った場合には、実験に対して比較的好意的な人が参加することになってしまうので、母集団(大学生、年代、出身地)を正しく反映しない可能性が高くなってしまう。つまり、被験者の集め方によっては、対象とする被験者が集まったとしても、性別や性格に偏りがでる可能性がある。また、実験に慣れている被験者と慣れていない被験者とでは実験結果が大きく異なる可能性もあるということも留意しなくてはならない。 また、本実験を行う前には、予備実験を行い、①条件操作の妥当性、②適切な測度、③適
  • 実験 環境 心理学 女性 心理 問題 大学 記憶 運動
  • 550 販売中 2008/06/21
  • 閲覧(7,471)
  • 東工大:物理学実験 「放射線5,6」
  • 半導体を用いた放射線の計測を行い、それを通じて検出器の性質を確かめる。またプリアンプや整形 アンプを通した波形を観察する事によって、得られる結果に対して考察を与える。 今回放射線の計測に用いたのは、半導体検出器と呼ばれる検出器である。半導体検出器より得られた 信号は、プリアンプおよび整形アンプを経て PCでそのエネルギーごとにカウントされる。以下に、検 出器および回路の概要を述べる。 2.1 半導体検出器は、電子をキャリアとする N 型半導体および P型半導体が用いられる。これらの半導体 を薄い皮膜を挟み接合したものを PN 接合と呼ぶ。PN 接合の付近では、正孔と電子が結合し、キャリ アが不足した状態が発生する。このような状態は PN 接合の付近で層状に見られ、空乏層とよばれる。 このような PN 接合した半導体に電圧をかけると、電圧の向きにより電流が流れる場合と流れない場 合がある: 順方向バイアス P型半導体の側にプラスの電圧をかける場合、これを順方向バイアスをかけるという。 この時、N 型半導体へは電子、P 型半導体へは正孔が注入されることになる。 逆方向バイアス P型半導体
  • 実験 電子 エネルギー 半導体 回路 測定 変化 波形 グラフ 時間
  • 7,150 販売中 2009/07/08
  • 閲覧(2,407)
  • 東工大:物理学実験 「アナログ回路」
  • 1 実験の目的 オペアンプを用いた回路を作成し、その動作を確かめる。またオペアンプを用いた安定期及びボル テージフォロワ、減算器を作成することでオペアンプの実用的な使い方を学ぶ。 2 実験の原理 今回の実験では、オペアンプを用いた。オペアンプの性質を次に示す。オペアンプは非反転入力と反 転入力、そして一つの出力を備えた演算回路素子である。オペアンプは図 1 のような回路記号で表され、 出力電圧 Eout は非反転入力 E+ と反転入力 E− により次の式で与えられる。図中では出力電圧がピン 番号 1、反転入力がピン番号 2、非反転入力がピン番号 3 で与えられている。 Eout = (E+ E−) (1) ここで は増幅率である。理想的なオペアンプでは次のような条件が満たされているとする。 1. 入力インピーダンスが無限大 2. 出力インピーダンスが 0 3. 増幅率 が無限大 実在のオペアンプではこれらの条件は満たされていないが、満たされているものとしてその動作を論じ ることができる。1 が満たされているときの動作は具体的には次のとおりである。 E+ = E− のとき Eout =
  • 実験 回路 オペアンプ 増幅 原理 理想 抵抗 波形
  • 7,150 販売中 2009/07/08
  • 閲覧(4,045)
  • 東工大:物理学実験 「デジタル回路」
  • ディジタル回路を組み合わせ回路を作成することにより、回路の動作を確認する。また、ディジタル IC の動作条件について調べる。具体的には TTLと CMOS についてスレッショルドレベルとファンア ウト数を求める。 2.1 組み合わせ回路 まずはじめに、組み合わせ回路を作成する。NAND 回路の真理値表は表1のとおりである。このNAND 入力 A 入力 B 出力 0 0 1 1 0 1 0 1 1 1 1 0 表 1: NAND回路の真理値表 回路を用いて OR 回路を作成する。OR 回路の真理値表は表 2 のとおりである。ブール代数を用いれば、 NAND 回路は A と B という入力に対し論理積の否定 ¯A ¯B を返し、OR 回路は A + B を返す。 入力 A 入力 B 出力 0 0 0 1 0 1 0 1 1 1 1 1 表 2: OR回路の真理値表 次に図 1 のような回路を作成した。 図 1: NAND回路を組み合わせて作った OR 回路 この回路は A と B という入力に対し A A B B = ¯A ¯B = ¯¯A + ¯¯B = A + B 入力 R 入力 S
  • 実験 回路 ロック NAND 種類 対応
  • 7,150 販売中 2009/07/08
  • 閲覧(2,699)
  • 東工大:物理学実験 「コンダクタンスの測定」
  • 1 実験の目的 気体の流れの物理を学び、系の到達圧力を決定している要因を理解する。 2 実験装置  (図Ⅰ)のような実験装置を準備する。本装置は、真空容器1、2と間を接続するバルブ 付きの三本の導管からなる。真空は真空容器2に接続してあるロータリーポンプ( RP )を 用いて引き、圧力は各容器上部のピラニゲージ( PG )で測定する。真空容器には、リークバ ルブ( LV )が取り付けてあり、容器2とロータリーポンプ間は、主排気バルブ( MV )で接 続してある。 3 実験原理  コンダクタンスとは、(図Ⅱ)のような系において、  で定義される、気体の流入出のしやすさをあらわす量である。 P1,P2 は容器内の圧力であ り、 Q は配管を流れる気体流量である。本実験では、較正と補正を測定しながら、系のコンダ クタンスの量を得る事が本筋である。 4 実験手順 手順1 真空状態とポンプの動作確認  系のバルブの開閉を適、 RP ス入れ、 MV と RP 間配管を真空に引次 に、 MV 、すの導管バルブ( CV )の順に開け、 PG のス入れる。 PG の真空下 がりかわらなる引 手順2 ピニ
  • 実験 測定 気体
  • 5,500 販売中 2009/07/08
  • 閲覧(4,131)
  • RT-PCRによる遺伝子発現解析実験
  • RT-PCRによる遺伝子発現解析実験 実験日 7月12日 目的 暗所に順応させたタバコと、短時間の光照射を行ったタバコを用い、光によって転写レベルで発現誘導を受ける葉緑体遺伝子(psbD)のmRNAの変動を測定する 原理 RT-PCR : 遺伝子発現を調べる実験で、目的遺伝子の発現量が少ないとき、調整できるRNA量に限界があるときは、PT-PCRが威力を発揮する。RT-PCRはRNAを逆転者反応によりcDNAにし、これに対してPCRを行うものである。 psbD遺伝子 : 光合成の光化学系IIの反応中心タンパク質D2をコードする葉緑体遺伝子。青色光・近紫外光で特異的な発現誘導を受ける。psbD上流の光応答プロモーター(psbD LRP)が光による活性化を受ける。 実験材料 実験1 3日間暗処理を行ったタバコ(D),暗処理後4時間の光照射処理を行ったタバコ(L) TRIzol(酸性フェノール,タンパク質変性剤) 500μl クロロフォルム 100μl イソプロパノール 250μl 75%エタノール 500μl DW 実験2 RT反応液 9μl MgCL2 5ml 10XRT buffer x1 dNTP 1mM Rnase Inhibitor 1U/μl AMV 逆転写酵素 0.25 U/μl Random 9 primer 2.5μM RNA sample 0.2μg RNA(0.2μg/μl) 1μl PCR反応液 40μl 5X PCR buffer x1 Ex Taq 1.25U/μl PsbD 上流primer 0.2μM PsbD下流 primer 0.2μM 実験3 6x loading buffer 2μl 1%アガロースゲル 実験4 ・RNA loading buffer 6μl 実験方法 実験1 RNAの抽出 3日間暗処理を行ったタバコ(D)、および暗処理後4時間の光照射処理を行ったタバコ(L)をもちいた。 約100mgのタバコ葉をエッペンチューブに入れた。 直ちに500μlのTRIzolを加え、ペッセルで完全にすりつぶした。 室温で5分間静置した。 100μlのクロロフォルムを加え、15秒間手で振ってよく攪拌した。室温に2-3分間静置した。 12000xg、4℃で10分間遠心分離した。 300μlの上澄み液を別のクリーンなエッペンチューブに移した。 250μlのイソプロパノールを加え、混合した。 10分間室温で静置した。 12000xg、4℃で10分間遠心分離した。 上澄み液をピペットマンで完全に吸い取った。この時、沈殿を吸わないように注意した。 RNAの沈殿に500μlの75%エタノールを加え、エッペンチューブを軽く傾けて内壁を洗った。激しく攪拌してはいけない。 12000xg、4℃で5分間遠心分離し、上澄みを吸い取った。 5分間風乾した。 50μlのDWに溶解した。使用するまで、氷上に静置した。 サンプルを2μl取り、98μlの水で100倍希釈し、紫外線吸収を測定した(230,260,280nm)。 実験2 RT-PCR反応 各自のRNAサンプルを0.2μg /μlに希釈した。 PCRチューブにRT反応液9μlを入れた。 0.2μg /μlのRNAを1μl加えた。 反応液をピペットマンを使い静かに混合した。 スピンダウンをした。 PCR装置にセットした。 次の条件で逆転写反応を行った。 30℃ 10min 55℃ 25min 99℃ 5min 5℃ 5min 逆転写反応が終わったら、PCRチューブを氷上に置き、スピンダウン
  • レポート 理工学 RT-PCR 遺伝子発現 タバコ 葉緑体遺伝子 mRNA
  • 550 販売中 2006/12/06
  • 閲覧(5,462)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?