連関資料 :: 実験

資料:323件

  • 心理学基礎実験 ミューラ・リヤーの錯視実験
  • 序論  我々は日常生活の中で「錯覚」という言葉をいろいろな意味に使用している。心理学での「錯覚」とは、外界の事物をその客観的性質に相応しないで知覚することを示す。  また、「錯視」とは目の錯覚のことで、対象(刺激)の大きさや形、色、明るさなどの関係が対象の客観的関係と著しくくいちがってみられる現象をいう。図形などの刺激を、注意深く観察しても、さらにその現象を熟知する人が観察しても、錯視は明確にあらわれる。錯視は知覚の誤りではない。日常生活の中で比較的頻繁におこり、分量は少なくても、本質的には錯視と同様の知覚の歪み(ずれ、くいちがい)が生じているにすぎない。したがって、錯視は何ら異常な現象ではなく、正常な視知覚現象なのである。  このような知覚的に見られた関係と物理的に図られた関係の不一致の程度(錯視量)の想定を試み、測定法に関する諸条件や錯視のあらわれ方を規定する諸要因について考察してみた。 −ミューラ・リヤーの錯視とは−  1889年にM.C.Muller-Lyerによって発表された線分の長さの錯視である。すなわち、客観的にも主観的にも等しい長さの線分の両端に鋏辺をつけ加えると、その線分の長さが異なって見えるという錯視であり、鋏角が鈍角の場合には過大視が、鋭角の場合には過小視がおこる。ミューラ・リヤーの錯視の図形の標準型の特徴は、主線に付け加えられる条件線が内向・外向の矢羽であてその頂点が鋭く尖っている。多くの幾何学的錯視の中でも特に有名で、多くの変形図案も考案されており、また鋏角の大きさ、鋏角の長さ、主線の長さ、鋏辺と主線の長さの比、鋏辺と主線の太さ、図形の大きさなど、錯視を規定する要因について数多くの研究がなされている。  ミューラ・リヤーの錯視図形がもっとも有名である理由の1つは、多くの錯視図形と比べて、格別に強力な錯視効果を示し、際立って錯視量が大きいという点にある。
  • レポート 心理学 心理学基礎実験 ミューラ・リヤー 錯視実験
  • 550 販売中 2006/02/06
  • 閲覧(26,865) 1
  • 体液のホメオスタシスに関する実験
  • 目的:水・電解質・重曹を負荷した後に尿を採取してpH・浸透圧等を測定することで、体液のホメオスタシスについて理解する。またpHの緩衝作用について学習することで、生体の酸塩基平衡について理解する。 ?:体液のホメオスタシスに関する実験 器具・材料:1、水700(ml)、0.9%食塩水700(ml)、1.5%重曹水700(ml)、0.5Mスクロース、0.5MNaCl       2、pH試験紙、浸透圧計 <実験1>=浸透圧と濃度= グラフ入り 方法:0.5Mスクロースと0.5MNaClをそれぞれ50(ml)とり、濃度が半分になるように希釈した。この操作を3回繰り返し、作成したそれぞれの濃度の溶液の浸透圧を記録した。 結果:上の表・グラフに示すような結果が得られた。 考察:浸透圧は濃度が高い程高くなる為、濃度を半分にしていけば、浸透圧もほぼ半分になると考えられる。またNaClは非常に強い電解質であり、溶液中ではほとんどが Na+とCl-の2分子として存在している。スクロースは1分子で存在している為、浸透圧はNaClの方が比較的高くなる。 <実験2>=水の再吸収= グラフ入りー
  • レポート 医・薬学 ホメオスタシス 塩基 ヘンダーソン クリアランス
  • 550 販売中 2006/03/18
  • 閲覧(3,604)
  • 実験(Diels-Alder)
  • Diels-Alder反応により得られる2-ノルボルネン-5,6-ジカルボン酸誘導体を通して有機化合物の立体化学について理解する。 <実験方法>  (1日目) <目的> 試料1 3.8 g 水 50 ml 100 ml ナス型フラスコ 試料2へ 融点測定 (素焼き板) 加熱還流 15 min (オイルバス&リービッヒ冷却管) 室温で冷却 1 hour 氷冷 吸引濾過 秤量 2.81 g 0.34 gを38班から補う NaHCO3飽和水溶液 10 mlで2回有機層を洗浄する エーテル 20 mlで2回抽出 MgSO4 3.01 gで乾燥 減圧蒸留 (エバポレーター) (2日目) 試料2 2.94
  • 有機実験 ディールスアルダー TLC 実験手順 東工大
  • 550 販売中 2008/04/18
  • 閲覧(3,505)
  • 生体制御実験
  • 1.実験目的 1)ヒトの肘関節まわりの筋が発揮している筋張力を,モデルおよび筋電図を用いて推定する. 2)筋疲労によって,1)の方法で推定した筋張力が,関節角度の違い,筋の違いによって,どのように変化するか考察する. 3)筋疲労によって,筋収縮がどのように変化するかについて,周波数解析を用いて考察する. 2.実験装置 今回の実験装置について、以下にシステム構成図を示す。 図2-1 システム構成図 2.1 実験機器 ・NIHON KOHDEN Ag/AgCl電極 ・生体アンプ Multi Channel Amplifier NIHON KOHDEN  型番:MEG/6108M ・オシロスコープ FOUR CHANNEL DIGITAL STORAGE OSCILLOSCOPE Tektronix 型番:TDS2014 ・ひずみアンプ KYOWA STRAIN AMPLIFER  型番:DPM-711B ・ひずみゲージ ・ポテンショメータ ・WE A/D変換ボード YOKOGAWA 形式:WE400 3.実験方法 1)被験者:2名(右利き) 2)筋電図:腕橈骨筋(BR)と上腕二頭筋(BB),上腕三頭筋(TB) 3)運動課題 ・肘関節角度90度における屈曲および伸展の最大随意収縮(Maximum Voluntary Contraction : MVC). ・30%と50%MVCのトルクレベルで等尺性収縮の肘屈曲課題(疲労するまで) ・それぞれ2種類の肘関節角度(30°,90°,完全伸展位=0°)で行う. 4)実験手順 ・おもりを用い,ひずみゲージ(力センサ)の較正値の計測(calibration) ・角度計のcalibration ・EMG電極を筋腹に装着 ・EMGの確認と生体アンプのcalibration ・肘関節角度90°でMVCを数回計測 ・等尺性収縮の屈曲課題 ・モデルのための形態計測+被験者の身体的特性(身長,体重,年齢など)
  • レポート 医・薬学 筋疲労 筋電図 上腕二頭筋 上腕三頭筋 腕橈骨筋
  • 550 販売中 2006/02/01
  • 閲覧(2,516)
  • ヒューマニクス系実験
  • ウシ血清からのIgG抗体の精製の目的・手順 目的 Protein G sepharoseを用いたアフィニティークロマトグラフィーで、ウシ血清に含まれるIgG抗体を精製する。 手順 ?Protein G sepharose4 Fast FrowをPoly prepカラムに500μl加える。さらにTBSを10ml加え、室温で5分間静置【カラムの平衡化】 ?ウシ血清1mlとTBS1mlを2mlチューブで混ぜる ?ウシ血清サンプルをカラムに加え、シーソーシェーカーで15分間振とうしながら反応させる ?壁を洗うようにカラムにTBSを10ml加え素通し、下部のふたをして、再びカラムにTBS10ml加える。 ?上部、下部のふたを外してバッファーをビーカーに捨てる。上部、下部のふたを蒸留水でよく洗浄 ?下部のふたをして、再びカラムにTBS10mlを加えて、??を再び行う。この洗浄を全部で3回繰り返す。 ?カラムにTBS30mlを素通しする。キムワイプを下部につけ、毛細現象を利用しながら余分なバッファーを吸い取る。 ?【溶出】0.1M Glycine Buffer(pH2.2)50μlを加え、指で軽く混ぜた後、室温で5分間静置。 ?【Protein G sepharoseの除去】ピペットマンでゲルを吸い上げないように溶出液全量を吸い上げる。0.22umに全量を移して、チビタンRde30秒間遠心する。 ??の溶出液に1MTrisHCl(pH8.8)を3.8μl入れ中和 試薬類 □Tris-buffered saline,TBS(20mM Tris-HCl(pH7.5),137mM NaCl)溶液 200ml □Protein G sepharose 4 Fast Flow(20倍希釈)1.2ml□ウシ血清2.2ml □0.1M Glycine Buffer(pH2.2)120μl□1M Tris HCl(pH8.8)15μl 考察 ?血清、血漿の違いとは、血清は血液が凝固して血球成分と淡黄色の透明な液体成分に分かれたときの液体成分のこと。血清には血液凝固にかかわる凝固因子が失われている。  逆に血漿には血液凝固に必要な凝固因子が含まれている。 ?Fc領域とは、抗原との結合活性を持たないばかりか、放置しておくと簡単に結晶化する性質をを持っている領域。免疫系の他の細胞表面に存在するFc受容体と反応し、細胞を活性化、あるいは機能を抑制したり、Fc部分それ自身に捕体成分を活性化するはたらきがあり、抗体の生物活性を発揮する部位のことである。
  • レポート 理工学 免疫 IgG抗体 SDS プラスミドDNA 制限酵素
  • 550 販売中 2006/06/28
  • 閲覧(2,320)
  • 実験レポート表紙
  • 実験表紙用フォーマットです。 もともと「東京電機大学用工学部実験用表紙」として作成しましたが、基本的に工学系実験用に作成してありますので、他のものにも転用が可能だと思います。 記載内容は、実験No.、実験タイトル、実験日、実験場所、学年、グループ、学籍番号、氏名、共同実験者学籍番号、共同実験者氏名、大学名です。
  • レポート表紙 実験 表紙 書式 東京電機大学 電大
  • 550 販売中 2006/07/19
  • 閲覧(8,678)
  • 油圧制御実験
  • 1.実験の目的 油圧の力を利用して物体の運動を制御する油圧制御は建設機械,自動車,航空機,船舶,超高層ビルの制御装置などで広く使われている重要な技術である.本実験では油圧制御の原理の理解と油圧制御システムの一例として電気・油圧サーボシステムの各構成要素の特性とシステム全体の関係を実験的に把握し,簡単な線形モデルとの特性比較をし,油圧制御システムの要素を深めることを目的としている. 2.実験装置 システム構成は以下の通りである 図2-1 スプール弁サーボモータシステム 実験装置は以下、表2-1を参照されたい 表2-1 実験装置名称 <サーボアクチュエータ> 形式       LMA10-20 動的最大推力   9.81kN 受圧面積     6.28c? ピストンロッド径  35mm 定格ストローク  200mm 機械的ストローク 206mm <油圧源> 形式       07-50 定格使用圧力   20.6Mpa 定格吐出流量   15.4L/min 電動機使用    3相 AC200/220V 50Hz 7.5kW 4P 全閉外扇 起動方式     直入方式 冷却方法     空冷式 作動油タンク容量 60L 使用作動油    一般鉱物系作動油 (ISO VG46 相当) <サーボ増幅器> 形式       CA-741B-E 入力信号数    5(SIG,FB1,FB2,FB3,FB4) 入力電圧範囲   ±10V 出力電流     ±100mA ゲイン調整    プリ,メイン 電源       AC100/200V 50/60Hz <変位増幅パネル> 変位表示機    ディジタル方式 出力電圧     ±10V 3.実験方法 3.1 オープンループ制御実験 オープンループの状態で方形波を入力し,出力応答を測定し,前向き路のゲイン定数を導出する.
  • レポート 理工学 メカトロ 制御 芝浦 追従
  • 550 販売中 2006/02/01
  • 閲覧(2,500)
  • 制御工学実験
  • 1.実験目的 2次遅れ系を中心とした動的システムの安定性解析および動特性に関する数値シミュレーションを行う。特に、時間領域の解析を行う。制御対象および閉ループ(PID 制御)系に対する過渡応答の数値計算を通して基本的な制御理論の理解を目的とする。本実験を通して制御工学を中心とした機械工学の専門科目への興味や知識を深め、今後の講義等に生かしていけるようにする。 <中略> 2-2.システムの安定性 システムの動特性を評価するとき、最も重視される特性は、安定性である。機械構造物の場合、安定性が保証されていないものは、暴走や破壊などの危険を伴う。また、ロボットや生産ラインなどで使用される装置では、性能に影響を与える。したがって、あるシステムにおいてその安定性は、最も把握しておかなければならない特性である。制御工学の始まりは回転速度を制御する「ガバナ(調速器)」をいかに安定化するかといった安定化問題からと言われている。制御工学の中でもこのような理由から基本事項となっている。 そのような安定性を評価する指標が定義されている。あるシステムの伝達関数 の分母D(s)(Denominator)および分子N(s)(Numerator)を定義したとき、分母多項式D(s) を0 とする解をシステムの極という。極の配置とシステムの特性には関連がある。 <中略> 6.2.フィードバック制御系 MATLAB およびSIMULINK を用いて、PID 制御による閉ループ系のインディシャル応答変化を調べる。制御対象は、式(1)の伝達関数で記述される機械振動系(m = 2、c = 1、k = 1)とする(init trf.m)。また、PID コントローラC(s) の各ゲインパラメータは以下のように設定し数値計算を行う(pid sim.m)。最後に、計算された結果をファイルに保存する(pid sim.dat)。
  • レポート 理工学 時間応答 古典制御 実験
  • 550 販売中 2006/04/16
  • 閲覧(4,347)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?