資料:61,047件
-
2-1ジュールの法則
-
ジュールの法則 内部エネルギーは温度だけで決まるのか。 ゲイリュサック・ジュールの実験 容器に閉じ込められていた気体が真空中へ広がる時、その気体には外部から圧力が掛かっていないので仕事をしないはずだ。 こういう状況を「自由膨張」という。 これに関連して次のような実...
- 全体公開 2007/12/26
- 閲覧(6,060)
-
-
2-1完全規格直交系
-
完全規格直交系 ブラ・ケット記法を理解するための数学的基礎 級数展開 あらゆる波形が三角関数の組み合わせで表現できてしまうという話を知っているだろうか。 例えば、次のような無限個の関数の集まり(関数系)を考える。 このそれぞれの関数に定数を掛けて全てを足し合わせ...
- 全体公開 2007/12/26
- 閲覧(3,151)
-
-
2-1結論から始めよう
-
結論から始めよう 目標が見えなければ・・・自分が何をやっているのか、 何に力を入れていいのかが見えなくなるから。 目標を提示しよう 一般相対性理論の敷居が高いのは、そこにたどり着くまでにリーマン幾何学という数学を学ばなければならないからである。 もしこのリーマン幾...
- 全体公開 2007/12/26
- 閲覧(926)
-
-
2-1解析力学とは何か
-
解析力学とは何か 予備知識(偏見とも言う)を授けておこう。 解析力学とは何か? 私は物事の抽象化が嫌いである。 形式を重んじる余り、何か本質から離れていっているような気がするからである。 私には解析力学はまさにそういう作業をやっているように思えるのだが、本当に本質...
- 全体公開 2007/12/26
- 閲覧(2,435)
-
-
2-2ブラ・ケット記法
-
ブラ・ケット記法 世界はよくもまぁ、 こんなくだらないシャレに付き合わされたものだ。 波動関数はベクトルだ 前回は「完全規格直交系」について学んだ。 今回はこれを波動関数に応用してやる話だ。 範囲の制限はあるものの、あらゆる形の関数が完全規格直交系の係数の組で表さ...
- 全体公開 2007/12/26
- 閲覧(3,697)
-
-
2-2代表的な二つの公式
-
代表的な二つの公式 「重力場の方程式」で空間の曲がりを計算してやれば、 あとは「測地線の方程式」で物体の軌道を知ることが出来る。 大切な式はただ二つ 一般相対論から導かれる基本公式は二つある。 一つは「測地線の方程式」である。 ここでは表面上の説明だけを軽くして...
- 全体公開 2007/12/26
- 閲覧(1,338)
-
-
2-2断熱過程
-
断熱過程 断熱関係式を求めたい。 断熱圧縮 シリンダーに気体を入れていきなり圧縮すると熱くなる。 中学辺りで実験しなかっただろうか? シリンダーに空気と一緒に綿を入れておいて、体重をかけてピストンを一気に押し込むと、綿がチカッと輝きを放ち、一瞬にして燃え尽きてしま...
- 全体公開 2007/12/26
- 閲覧(2,250)
-
-
2-2運動方程式の変形
-
運動方程式の変形 ラグランジュ方程式とニュートンの運動方程式の関係 ラグランジュ方程式の導出 さあ、前置きなしに始めよう。 ニュートンの運動方程式は と書ける。 ところで、力 F はポテンシャルエネルギー V を使って と書ける。 摩擦力などが働く場合はこのようには書けな...
- 全体公開 2007/12/26
- 閲覧(1,265)
-
-
2-22物体の衝突
-
2物体の衝突 ここはそれほど面白いことはないと思うよ。 これまで見てきた運動量保存則とエネルギー保存則を使えば、2つの物体が衝突した後でそれぞれの速度がどうなるかを計算することが出来る。 物体A(質量m)の衝突前と後の速度をそれぞれ v, v’ 物体B(質量M)の衝...
- 全体公開 2007/12/24
- 閲覧(2,675)
-
-
2-3ジュール・トムソン効果
-
ジュール・トムソン効果 恩恵を受けているにも関わらず、 誤解は大きい。 実験の改良 2つ前に話した「ゲイリュサック・ジュールの実験」を思い出してもらいたい。 熱力学は熱平衡に達した状態での状態量の関係を論じる学問だから、気体が真空中に広がろうとしている途中での状態...
- 全体公開 2007/12/26
- 閲覧(4,592)
-
-
2-3ユニタリ変換
-
ユニタリ変換 古い教科書に「ウニタリ」と書いてあって、 何か未知の学問かと思った。 抽象化への道 ここまでの話で、波動関数を使った計算とベクトルを使った計算との間にかなりの対応関係があるという雰囲気が分かってもらえただろうと思う。 しかし、ある状態をベクトルで表...
- 全体公開 2007/12/26
- 閲覧(3,315)
-
- 資料を推薦する
- 優良な資料があれば、ぜひ他の会員に推薦してください。
資料詳細ページの資料右上にある推薦ボタンをクリックするだけでOKです。
- 会員アイコンに機能を追加
- 会員アイコンをクリックすれば、その会員の資料・タグ・フォルダを閲覧することができます。また、フレンドリストに追加したり、メッセージを送ることも可能です。
- ファイル内検索とは?
- 購入を審査している資料の内容をもう少し知りたいときに、キーワードを元に資料の一部内容を確認することができます。
広告