資料:43件

  • 4-2ディラック方程式
  • ディラック方程式 曲芸ディラックの技が冴える! ディラックの考え これまでの解説にも度々出て来ているディラックだが、彼はクライン・ゴルドン方程式の負の確率の問題について考えていた。 そもそも、この式の左辺が時間の2階微分になっているのが問題である。 2階
  • 全体公開 2007/12/26
  • 閲覧(2,820)
  • 1-2ド・ブロイ波
  • ド・ブロイ波 ド・ブロイ氏はこれ以外に何をした人なのだろう? ド・ブロイ氏の考え 前に出てきた光の「エネルギーと周波数」「エネルギーと波長」の2つの関係式「 E = h ν、E = c p 」を少しいじってやると E = h ν p = h / λ という
  • 全体公開 2007/12/26
  • 閲覧(3,657)
  • 2-4座標表示
  • 座標表示 波動関数の正体に迫る。 波動関数とベクトルの関係 関数系による足場を外されたので少々不安を感じているかも知れない。 ここらで「波動関数表現」と「ベクトル表現」の関係を数式を使って確認しておくことにしよう。 そうすれば少しは安心できるだろうか。 こ
  • 全体公開 2007/12/26
  • 閲覧(1,650)
  • 4-3パウリ表現
  • パウリ表現 今回は適度に手抜き。 最後まで読まないと誤解する可能性がありますよ。 ディラック方程式に出てくる 4 つの未知係数を求める事が今回のテーマである。 条件は以下の通り。 (1) (2) 今回の話に都合がいいように
  • 全体公開 2007/12/26
  • 閲覧(3,938)
  • 1-3シュレーディンガー方程式
  • シュレーディンガー方程式 ド・ブロイ波と古典力学を直接結びつけた賢い方法とは・・・ 動機 「ド・ブロイ波の形が知りたい」 ド・ブロイ波の存在が実験で確かめられるようになると、単なる面白いアイデアだと笑ってはいられなくなる。 それは一体どんな形をした波なのだろ
  • 全体公開 2007/12/26
  • 閲覧(2,164)
  • 2-5運動量表示
  • 運動量表示 波動関数を別角度から見る。 運動量を示すベクトル シュレーディンガー方程式を立てた時のことを思い出してもらいたい。 波動関数を位置座標で微分して -i を掛けることで運動量を取り出せるのであった。 どうやら波動関数には位置についての情報の他に、運
  • 全体公開 2007/12/26
  • 閲覧(3,065)
  • 4-4 4 成分の意味
  • 4 成分の意味 相対論万歳! 解の意味を探る ディラック方程式に含まれる係数が大体どんな値をとるのかという傾向が分かって一安心できたので、次は解の解釈を試みよう。 4 つの状態が絡み合う形の解とは一体何を意味しているのだろうか。 方程式の各係数 α、β
  • 全体公開 2007/12/26
  • 閲覧(2,850)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?