資料:43件

  • 1-5期待値
  • 期待値 ミクロの世界と我々の日常をつなぐ大切な概念 期待値と平均値 サイコロを振った時に出る目の期待値は「3.5」である・・・というのは高校で習ったかも知れない。 しかしサイコロを1回振っただけではこの数字の意味は実感できないだろう。 1から6までのどの数字
  • 全体公開 2007/12/26
  • 閲覧(2,218)
  • 2-7ここまでのまとめ
  • ここまでのまとめ ここまでの説明は遠回りしすぎだ。 心残り ここまで六回にわたってブラ・ケット記法の説明をしてきたが、 イメージを描けるようになることを優先した結果、かなり遠回りをしてしまったように思う。 本当は途中で差し挟みたい説明もあったのだが、本筋から
  • 全体公開 2007/12/26
  • 閲覧(50,773)
  • 4-6ディラックの海
  • ディラックの海 「誰々の何々」って感じの表現、かっこいいよね。 負エネルギー問題の解決 たとえ負エネルギーの解を認めても、確率密度が負になってしまうような問題が生じないで済むことが分かって一安心だ。 しかし負エネルギーを認めること自体にすでに大きな問題がある
  • 全体公開 2007/12/26
  • 閲覧(2,100)
  • 1-6不確定性原理
  • 不確定性原理 歴史を振り返らないと見えないものがある。 私の疑問 「不確定性原理」という言葉を聞いたことがあると思う。 解説はそこら中にあふれている。 要はミクロな領域では粒子の位置と運動量は正確には決められず、 という「不確定性関係」が成り立つ、というも
  • 全体公開 2007/12/26
  • 閲覧(2,854)
  • 2-8摂動論
  • 摂動論 まずは時間を含まない場合、縮退がない場合。 摂動論を学ぶ理由 摂動論は近似解を求めるテクニックの一つである。 正確に解ける問題があって、そこから設定がほんの少しだけずれた時に解がどのように変化するかということを導く技である。 人間の力で正確に解ける
  • 全体公開 2007/12/26
  • 閲覧(2,283)
  • 4-7 g 因子が 2 となる理屈
  • g 因子が 2 となる理屈 ようやく約束を果たす。 電磁場中の方程式 いよいよ「 スピンとは何か 」の記事中に書いた約束を果たすことにしよう。 スピンの場合に g 因子が 2 となる理由を論理的に示すことにする。 残念ながらスピンの持つ全ての性質を、我々
  • 全体公開 2007/12/26
  • 閲覧(2,504)
  • 1-73次元の波動
  • 3次元の波動 普通と違う説明をするのは非常に不安ではある。 3次元に拡張 ここまでは余計なことで頭を悩ませなくても済むように x 座標のみを考えた「1次元のシュレーディンガー方程式」を使ってきた。 しかし現実には3次元を考えないといけない。 もちろん電子
  • 全体公開 2007/12/26
  • 閲覧(1,234)
  • 2-9摂動論2
  • 摂動論Ⅱ 縮退がある場合の対処。 問題点の確認 前回の話の続きである。 すでに求めた摂動論の公式の分母には異なる状態間でのエネルギー差が入っているために、同じエネルギーを持つ状態が複数ある場合には分母が0になってしまって破綻してしまうのだった。 こんなこ
  • 全体公開 2007/12/26
  • 閲覧(1,900)
  • 4-8非相対論的にスピンを導く
  • 非相対論的にスピンを導く シュレーディンガー方程式の線形化。 動機 ディラック方程式ばかりを使ってスピンの話をしていると、スピンは相対論的な効果の現れだというイメージで考えが固まってしまう惧れがある。 今回はディラック方程式を使うことなくスピンの存在を導いて
  • 全体公開 2007/12/26
  • 閲覧(3,632)
  • 1-8粒子性の正体
  • 粒子性の正体 ええ、確かに、私の考えは異端的だと良く言われますよ。 軌道の概念を忘れろ 前回は、波動関数の重ね合わせを使って、粒子性を説明できないかと考えてみた。 しかし粒子に良く似た一箇所に集中した波束を作っても、シュレーディンガー方程式による制限によって
  • 全体公開 2007/12/26
  • 閲覧(1,273)
  • 2-10遷移確率
  • 遷移確率 光電効果は光の粒子説の証拠とはならない? 時間変化を含む摂動論 今回は、ポテンシャルが時間的に変化する場合についても摂動論を使って解いてみよう。 これは単なる練習問題ではなくて、変動する電場の中に原子を置いたときに何が起こるかを知るためのヒントにな
  • 全体公開 2007/12/26
  • 閲覧(2,630)
  • 5-1ボソンとフェルミオン
  • ボソンとフェルミオン そしてエニオンも少々。 波動関数は実在か 波動関数は実在だろうか? 原子核の周りに作られる波動関数の振る舞いは、電子そのものの振る舞いであるようにも思える。 しかし観測の瞬間に波束が収縮する過程が物理的ではないため、波動関数を実在だと考
  • 全体公開 2007/12/26
  • 閲覧(4,148)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?