資料:43件

  • 2-7ここまでのまとめ
  • ここまでのまとめ ここまでの説明は遠回りしすぎだ。 心残り ここまで六回にわたってブラ・ケット記法の説明をしてきたが、 イメージを描けるようになることを優先した結果、かなり遠回りをしてしまったように思う。 本当は途中で差し挟みたい説明もあったのだが、本筋から
  • 全体公開 2007/12/26
  • 閲覧(50,773)
  • ヒルベルト空間
  • ヒルベルト空間 知らなくてもいいのだが、知らないと恥ずかしい。 知らないと不安じゃないか 量子力学をやっていると「ヒルベルト空間」なんて言葉によく出くわす。 実は学ぶ上でどうしても知っていなければいけないという言葉ではない。 なぜならこれは数学用語だからだ。
  • 全体公開 2007/12/26
  • 閲覧(8,803)
  • 5-2生成演算子と消滅演算子
  • 生成演算子と消滅演算子 交換関係こそが全て。 もちろん私の本心ではないが。 前置き 以前、粒子性を表すのに調和振動子の論理が応用できそうだという話をした。 そのための準備として調和振動子についての理論構造をもっと詳しく調べておこう。 これが「場の量子論」の基
  • 全体公開 2007/12/26
  • 閲覧(7,672)
  • レビ・チビタの記号
  • レビ・チビタの記号 色んなところで使うのだが、敢えて使わないできた。 定義 外積や、角運動量の交換関係をすっきりと表すために εijk という記号を使うことがある。 これは「レビ・チビタの全反対称量」と呼ばれている。 これまでも使った方が便利だなと思う場
  • 全体公開 2007/12/26
  • 閲覧(6,004)
  • 1-4波動関数の規格化
  • 波動関数の規格化 世にある解説本は量子力学を神秘的にとらえ過ぎだな。 確率解釈を取る理由 波動関数の絶対値の2乗が粒子の存在確率を表すと解釈されていることを話したが、これは根拠のないことではない。 もともと波動関数は電磁波からの類推で導かれた概念であった
  • 全体公開 2007/12/26
  • 閲覧(4,305)
  • 4-1クライン・ゴルドン方程式
  • クライン・ゴルドン方程式 相対論的に拡張したくなるのは当然だ。 相対論的拡張 シュレーディンガー方程式はエネルギーと運動量の関係式 を元にして作られたのだった。 しかしこの式は、運動量が極めて小さい時 ( mc >> p ) の近似表現に過ぎないことが特殊
  • 全体公開 2007/12/26
  • 閲覧(4,273)
  • 5-1ボソンとフェルミオン
  • ボソンとフェルミオン そしてエニオンも少々。 波動関数は実在か 波動関数は実在だろうか? 原子核の周りに作られる波動関数の振る舞いは、電子そのものの振る舞いであるようにも思える。 しかし観測の瞬間に波束が収縮する過程が物理的ではないため、波動関数を実在だと考
  • 全体公開 2007/12/26
  • 閲覧(4,148)
  • 3-7ベルの不等式
  • ベルの不等式 この話がしたくてスピンの記事を書いてきた。 量子力学は間違っている? アインシュタインは量子力学に反対した。 しかし決して邪魔したわけではない。 彼は人一倍考えていた。 真剣になって考え、反対してくれる人がいるのは心強いものだ。 誰もが彼に
  • 全体公開 2007/12/26
  • 閲覧(3,999)
  • 4-3パウリ表現
  • パウリ表現 今回は適度に手抜き。 最後まで読まないと誤解する可能性がありますよ。 ディラック方程式に出てくる 4 つの未知係数を求める事が今回のテーマである。 条件は以下の通り。 (1) (2) 今回の話に都合がいいように
  • 全体公開 2007/12/26
  • 閲覧(3,938)
  • 3-3角運動量の行列表現
  • 角運動量の行列表現 角運動量の話を第3部に持ってきた理由はここにある。 交換関係 ここまで描いてきた角運動量のイメージを補うために、数学の助けを借りることにしよう。 まずは角運動量の演算子の交換関係を調べることから始める。 大抵の教科書では真っ先にやるこ
  • 全体公開 2007/12/26
  • 閲覧(3,883)
  • 3-2量子数の意味
  • 量子数の意味 やはり世界はそれほど単純ではないよな。 磁気量子数 今回のテーマは、以前に「 原子の構造 」で計算した波動関数の中からどうやって角運動量についての情報を取り出すかということである。 そのために演算子を極座標で書き直しておく方がやり易い。 例えば
  • 全体公開 2007/12/26
  • 閲覧(3,827)
  • 2-2ブラ・ケット記法
  • ブラ・ケット記法 世界はよくもまぁ、 こんなくだらないシャレに付き合わされたものだ。 波動関数はベクトルだ 前回は「完全規格直交系」について学んだ。 今回はこれを波動関数に応用してやる話だ。 範囲の制限はあるものの、あらゆる形の関数が完全規格直交系の係数
  • 全体公開 2007/12/26
  • 閲覧(3,715)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?