資料:43件
-
1-2ド・ブロイ波
-
ド・ブロイ波 ド・ブロイ氏はこれ以外に何をした人なのだろう? ド・ブロイ氏の考え 前に出てきた光の「エネルギーと周波数」「エネルギーと波長」の2つの関係式「 E = h ν、E = c p 」を少しいじってやると E = h ν p = h / λ という
- 全体公開 2007/12/26
- 閲覧(3,657)
-
4-8非相対論的にスピンを導く
-
非相対論的にスピンを導く シュレーディンガー方程式の線形化。 動機 ディラック方程式ばかりを使ってスピンの話をしていると、スピンは相対論的な効果の現れだというイメージで考えが固まってしまう惧れがある。 今回はディラック方程式を使うことなくスピンの存在を導いて
- 全体公開 2007/12/26
- 閲覧(3,632)
-
1-11調和振動子
-
調和振動子 軽い気持ちで書き始めたのだが、つい長くなってしまった。 目的 「時間に依存しない方程式」の形を学んだばかりでもあるし、慣れるために簡単な例を紹介しておこう。 前に、微分方程式の解には離散的なエネルギー値だけが許される場合があるという話をしたが、そ
- 全体公開 2007/12/26
- 閲覧(3,382)
-
2-3ユニタリ変換
-
ユニタリ変換 古い教科書に「ウニタリ」と書いてあって、 何か未知の学問かと思った。 抽象化への道 ここまでの話で、波動関数を使った計算とベクトルを使った計算との間にかなりの対応関係があるという雰囲気が分かってもらえただろうと思う。 しかし、ある状態をベク
- 全体公開 2007/12/26
- 閲覧(3,328)
-
2-1完全規格直交系
-
完全規格直交系 ブラ・ケット記法を理解するための数学的基礎 級数展開 あらゆる波形が三角関数の組み合わせで表現できてしまうという話を知っているだろうか。 例えば、次のような無限個の関数の集まり(関数系)を考える。 このそれぞれの関数に定数を掛けて全てを足
- 全体公開 2007/12/26
- 閲覧(3,166)
-
2-5運動量表示
-
運動量表示 波動関数を別角度から見る。 運動量を示すベクトル シュレーディンガー方程式を立てた時のことを思い出してもらいたい。 波動関数を位置座標で微分して -i を掛けることで運動量を取り出せるのであった。 どうやら波動関数には位置についての情報の他に、運
- 全体公開 2007/12/26
- 閲覧(3,065)
-
4-5負の確率密度の解決
-
負の確率密度の解決 小細工は要らない。 今回の記事の目的 クライン・ゴルドン方程式には、確率密度が負になってしまうという困難があったのだった。 ディラック方程式ではどうだろうか。 結論を言ってしまえば、そのような問題は消えてしまっているのである。 何の小細工
- 全体公開 2007/12/26
- 閲覧(2,971)
-
1-6不確定性原理
-
不確定性原理 歴史を振り返らないと見えないものがある。 私の疑問 「不確定性原理」という言葉を聞いたことがあると思う。 解説はそこら中にあふれている。 要はミクロな領域では粒子の位置と運動量は正確には決められず、 という「不確定性関係」が成り立つ、というも
- 全体公開 2007/12/26
- 閲覧(2,854)
-
4-4 4 成分の意味
-
4 成分の意味 相対論万歳! 解の意味を探る ディラック方程式に含まれる係数が大体どんな値をとるのかという傾向が分かって一安心できたので、次は解の解釈を試みよう。 4 つの状態が絡み合う形の解とは一体何を意味しているのだろうか。 方程式の各係数 α、β
- 全体公開 2007/12/26
- 閲覧(2,850)
-
4-2ディラック方程式
-
ディラック方程式 曲芸ディラックの技が冴える! ディラックの考え これまでの解説にも度々出て来ているディラックだが、彼はクライン・ゴルドン方程式の負の確率の問題について考えていた。 そもそも、この式の左辺が時間の2階微分になっているのが問題である。 2階
- 全体公開 2007/12/26
- 閲覧(2,820)
-
2-6演算子は行列だ
-
演算子は行列だ エルミート演算子とは何か 線形変換 波動関数からエネルギーや運動量の値を取り出すには微分することが必要だった。 波動関数が指数関数の形をしていれば関数の形は変わらないが、それ以外の形をしていた場合には波動関数の形はひどく変化を受けることになる
- 全体公開 2007/12/26
- 閲覧(2,790)
-
1-9確率流密度
-
確率流密度 豆知識。 あとで役に立つ。 何に使うのか 今回の話は書くつもりは全くなかったのだが、第4部の「相対論的量子力学」を書いている途中で予備知識として必要を感じたのでここに入れることにした。 多くの教科書でこの話が出てくるが、私はこれまでそれが一体何の
- 全体公開 2007/12/26
- 閲覧(2,690)
新しくなった
ハッピーキャンパスの特徴
- 写真のアップロード
- ハッピーキャンパスに写真の
アップロード機能ができます。
アップロード可能なファイルは:doc .ppt .xls .pdf .txt
.gif .jpg .png .zip
- 一括アップロード
- 一度にたくさんの資料のアップロードが可能です。 資料1件につき100MBまで、資料件数に制限はありません。
- 管理ツールで資料管理
- 資料の中から管理したい資料を数件選択し、タグの追加などの作業が可能です。
- 資料の情報を統計で確認
- 統計では販売収入、閲覧、ダウンロード、コメント、アップロードの日別の推移、アクセス元内訳などの確認ができます。
- 資料を更新する
- 一度アップロードした資料の内容を変更したり、書き加えたりしたい場合は、現在アップロードしてある資料に上書き保存をする形で更新することができます。
- 更新前の資料とは?
- 一度アップロードした資料を変更・更新した場合更新前の資料を確認することができます。
- 履歴を確認とは?
- 資料のアップロード、タイトル・公開設定・資料内容説明の変更、タグの追加などを期間指定で確認することができます。