資料:28件

  • 3-4つじつま合わせ
  • つじつま合わせ なぜ L = T - V なのか。 質点を操るルール作り 前回はラグランジアンがいかにも人為的な量だというところまで話した。 では次に、ラグランジアンをどのように定めればニュートン力学に従う質点の運動と同じものを作り出すことが出来るのかを調べ
  • 全体公開 2007/12/26
  • 閲覧(2,025)
  • 3-3最小作用の原理
  • 最小作用の原理 ラグランジアンって・・・。 変分原理 前回の話を分析してみよう。 我々は質点が転がり落ちる時間 t を最短にするようなコース f (x) を求めたかった。 その時間 t を と表した場合、t が最小になるための条件は という方程式が成り
  • 全体公開 2007/12/26
  • 閲覧(1,193)
  • 3-2ベルヌーイの問題提起
  • ベルヌーイの問題提起 ニュートンは大天才だよ。 最速降下線問題 1696年、ベルヌーイが次のような問題を提起した。 「質点がある点 A からスタートして滑らかな斜面を転がり落ちるとき、最短時間で別の点 B まで辿り着くには斜面をどのような形にしたら良いだ
  • 全体公開 2007/12/26
  • 閲覧(1,795)
  • 3-1物理法則の形式
  • 物理法則の形式 変分原理のための前書き 物理学の法則は幾つかの形式に分類される。 一つは「微分形式」と呼ばれるものであり、ある瞬間の状態からスタートして微小な時間経過の後に状態がどのように変化するかを記述するやり方である。 あるいは、ある一点の状態から微
  • 全体公開 2007/12/26
  • 閲覧(1,199)
  • 2-7ポアッソン括弧式
  • ポアッソン括弧式 量子力学でこれを応用する 括弧式の導入 ハミルトニアンを使う利点がどういうところにあるかという部分を説明するために、ちょっと便利な表現を導入することにしよう。 まず、ある物理量 X が位置 と運動量 と時間 t の関数となっているとする
  • 全体公開 2007/12/26
  • 閲覧(1,442)
  • 2-6ハミルトニアン
  • ハミルトニアン 独立変数の変換 ラグランジアンは一般化座標 と一般化速度 の関数であった。 しかし、ここからは を使うのをやめて、代わりに一般化運動量 を使った体系に移行したい。 それには次のような理由がある。 (1) ラグランジュ方程式は時間の微分方程式
  • 全体公開 2007/12/26
  • 閲覧(2,368)
  • 2-5ルジャンドル変換
  • ルジャンドル変換 熱力学でも同じ手法を良く使う 文句 まず文句を言わせてくれ。 多くの解析力学の教科書では「ルジャンドル変換」の説明が少なすぎる。 ひどい場合、「このラグランジュ形式からハミルトン形式への変換をルジャンドル変換と呼ぶ」という一言で終わって
  • 全体公開 2007/12/26
  • 閲覧(2,584)
  • 2-4抽象化への準備
  • 抽象化への準備 大きな理念の前には小さな常識などたやすく覆るのだ。 とにかく一般化する ラグランジュ形式を使えば、デカルト座標をだろうが、極座標だろうが、他のどんな座標系であろうが、方程式の形が変わらないことを説明した。 つまり、もう特定の座標系にこだわっ
  • 全体公開 2007/12/26
  • 閲覧(1,013)
  • 2-3ラグランジュ方程式の利点
  • ラグランジュ方程式の利点 なぜこんなに有り難がるのか 計算のための断り書き まず、今回の話に出てくる具体的な計算をすべて 2 次元で行うことを許してもらいたい。 3 次元で行うと式が非常に面倒になることはすぐ後で分かるだろう。 議論の本質が変わってしまうこと
  • 全体公開 2007/12/26
  • 閲覧(3,173)
  • 2-2運動方程式の変形
  • 運動方程式の変形 ラグランジュ方程式とニュートンの運動方程式の関係 ラグランジュ方程式の導出 さあ、前置きなしに始めよう。 ニュートンの運動方程式は と書ける。 ところで、力 F はポテンシャルエネルギー V を使って と書ける。 摩擦力などが働く場合
  • 全体公開 2007/12/26
  • 閲覧(1,274)
  • 2-1解析力学とは何か
  • 解析力学とは何か 予備知識(偏見とも言う)を授けておこう。 解析力学とは何か? 私は物事の抽象化が嫌いである。 形式を重んじる余り、何か本質から離れていっているような気がするからである。 私には解析力学はまさにそういう作業をやっているように思えるのだが、本当
  • 全体公開 2007/12/26
  • 閲覧(2,454)
  • 1-4微分演算子の座標変換
  • 微分演算子の座標変換 計算は面倒だが理屈は簡単。 偏微分の変換 偏微分を含んだ式の座標変換というのは物理でよく使う。 この計算は微分演算子の変換の方法さえ分かっていればまるで問題ない。 例えばデカルト座標から極座標へ変換するときの偏微分の変換式は、 と
  • 全体公開 2007/12/26
  • 閲覧(3,749)
新しくなった
ハッピーキャンパスの特徴
写真のアップロード
一括アップロード
管理ツールで資料管理
資料の情報を統計で確認
資料を更新する
更新前の資料とは?
履歴を確認とは?