クラスタリング手法は個体の「クラスター」、「グループ」、「クラス」を、同じクラスター内の個体が別のクラスターに属する個体よりも何らかの意味で互いによく「似る」ように構成する方法である。クラスタリングの特徴は、判別・分類とは別であり、グループの数が既知であり、操作の目的が新しい観測値を1つのグループに割り当てている。そして、基本的手法で仮定を設けず、グループ分けは類似性や距離に基づいている。
分類または判断の問題での多変量解析について
クラスタリング手法は個体の「クラスター」、「グループ」、「クラス」を、同じクラスター内の個体が別のクラスターに属する個体よりも何らかの意味で互いによく「似る」ように構成する方法である。クラスタリングの特徴は、判別・分類とは別であり、グループの数が既知であり、操作の目的が新しい観測値を1つのグループに割り当てている。そして、基本的手法で仮定を設けず、グループ分けは類似性や距離に基づいている。
ここでは、クラスターが他のクラスターから分枝している解を生み出す特定の手法は、階層的手法として知られ、n個の個体を遂次大きなグループに併合していく凝集型の方法と、個体の集合を遂次小さなグループに細分していく分枝形の方法に区別できる。凝集形と分枝形の方法は、ともに個体間の類似性または距離の行列に適用でき、それらによる結果は、デンドログラムの形式で提示できるであろう。
次にクラスタリング手法の分類をすると、まず個体の1つが、1つだけのクラスターに属するか、2つ以上に属することを許すかによって、排他的か非排他的であるか分類し、分類のために利用する変数以...