考察
1. 日本におけるバイポーラトランジスタは以下のように命名されている。
2SAxxx PNP型高周波用
2SBxxx PNP型低周波用
2SCxxx NPN型高周波用
2SDxxx NPN型低周波用
2. 何らかの理由で平滑回路の出力電圧が上昇した場合
? かりに、何かの理由で出力電圧が上昇したとする。
? Tr1(10kΩ VRに接続しているトランジスタ)のベース電圧もR1:R2(10kΩ VRの比)の分圧比に応じて高くなる
? ところがTr1のエミッタ電圧は、ツエナーダイオードDzによって、一定電圧に抑えられているので、Tr1のベース・エミッタ間の電圧は大きくなり、Tr1のベース電流は増加する。
? したがって、Tr1のコレクタ電流が増加し、I1も増加する。
? その結果、RL(5.1kΩの抵抗)の両端の電圧降下も大きくなり、Tr2のベース電圧は減少し、Tr2(ここでは多段に接続されているトランジスタの事を指す)のベース・エミッタ間の電圧は小さくなる。
? そこで、Tr2のベース電流は減少し、Tr2のコレクタ電流I2も減少する。
? これはTr2の内部抵抗が大きくなったことを意味し、出力電圧を減少させることになり、出力電圧は一定となる。
3. 上の説明どおりVRを上の方に動かした場合、Tr1のベース電圧もR1:R2の分圧比に応じて高くなるので、上の結果と同じことになり、出力電圧は減少する。
4. 3端子レギュレータLM317の特徴は以下の通りである。
LM317 は、出力電圧1.2 〜 37V で出力電流1.5Aを供給できる正電圧可変型3 端子レギュレータIC です。 出力電圧は外付けの2 個の抵抗で設定でき、通常の固定型レギュレータより優れたライン/ ロード・レギュレーションを実現しています。(データシートより)
5. 今回の回路と、LM317で作製した場合を比較した場合、リップル率が今回の場合よりも大きくなる。
実験概要
今回の実験では基本となる電源回路を製作し、特性の測定を行う。
実験方法
始めに以下の図の回路を作製する。
安定化回路に負荷を接続し、特性を測定した。以下のようになった。
出力電流 I(A) 直流分 VDC(V) 交流分 VAC(mV) 電圧変動率 δ(%) リップル百分率 γ(%) 0.0 10 15 0 0.42 0.1 10 18 0 0.51 0.2 10 16 0 0.45 0.3 10 14 0 0.40 0.4 10 15 0 0.42 0.5 10 20 0 0.57 0.6 10 25 0 0.71 0.7 10 28 0 0.79 0.8 10 33 0 0.93...