状態方程式の微分形
最小限必要な偏微分の知識
全微分形式
理想気体の圧力、体積、温度を結びつける式については前に p V = n R T であるとした。 つまり p, V, T の内の2つの量が決まれば、残りの1つは自動的に決まってしまうということだ。 そこで、体積 V は温度 T と圧力 p の関数 V ( T, p ) であると考えて、次のような式を作ることが出来る。
なぜこのような表現が出来るかについてはきちんと説明しておこう。 軽々しく納得していいところではない。 ・・・とか言いつつも、解析力学のところでやった 以前の説明 はいい加減なものだったが。
温度と圧力がわずかに変化することで、体積がわずかに変化したとする。 その変化は次のように書ける。
これを変形してやれば、
と書けるが、ΔT と Δp について無限小の極限を考えれば、分数で表した部分は微分の定義式そのものである。 ただし高校で習う1変数のみの微分とは少しだけ違っていて、初めの項の中の分数の部分は p の値を固定したままでの T による微分を表しており、2項目の分数の部分は T の値を固定したままでの p による微分になっている。
このように他の変数を固定して行う微分を、通常の微分と区別して「偏微分」と呼び、記号も d の代わりに ∂ を使って区別する。 計算自体は全く難しくない。 考えている以外の変数を定数と見なして微分すればいいだけのことだ。
偏微分を書き表すのに、例えば、
と書いた場合、これは変数 x, y を固定して z で微分することを意味するのだが、もっと簡略化して、
のように固定した変数を右下に書いて表すことがある。 変数が分かっている場合には、右下の変数名さえ省略するし、そうする方が普通なのだが、熱力学ではどの変数を一定に保ったまま状態を変化させるかというところが重要なので、忘れないようにメモ代わりに書いておく習慣になっている。
それで先ほどのような表現が出来ることになるわけだ。 もう一度書いておこう。
・・・ (1)
このような表現を「完全微分」あるいは「全微分」と呼ぶ。 もちろん圧力 p や温度 T についてもそれぞれ p( V, T ) や T( V, p ) であると考えることが出来て、同じように全微分形式で書くことが出来る。
・・・ (2) ・・・ (3)
3通りの表現が出てきたが、どれを使っても本質的には同じ式である。 その時々に応じて一番便利だと思うものを使うことになる。
相関係数
色々な気体の性質の違いを比較するために、実験で p, V, T の間の関係を調べ、幾つかの相関係数として表すことが行われる。 (1) 式が便利な点は、式の中で使われている偏微分係数が、よく使われる相関係数の定義に近い形になっていることである。
例えば、(1) 式の第1項目の偏微分は圧力を一定に保ったまま温度を変化させた時の体積変化を表しているが、これを体積で割ったものは「定圧膨張率」あるいは「熱膨張率」として良く使われる値である。
また第2項目の偏微分を体積で割ったものにマイナスをつけたものは「等温圧縮率」として良く使われる値である。
マイナスが付くだけで難しく見えてしまうが、このマイナスは大した理由ではない。 圧力が増せば体積は減るのでこの偏微分の値は常にマイナスになってしまう。 係数が常にマイナスになるのはかっこ悪いのでそれを防ぐために付けてあるだけだ。
これらの係数を使って (1) 式を
微分演算子の座標変換
計算は面倒だが理屈は簡単。
偏微分の変換
偏微分を含んだ式の座標変換というのは物理でよく使う。 この計算は微分演算子の変換の方法さえ分かっていればまるで問題ない。
例えばデカルト座標から極座標へ変換するときの偏微分の変換式は、
となるのであるが、なぜそうなるのかというところまで理解できぬまま、そういうものなのだとごまかしながら公式集を頼りにしている人が結構いたりする。 学生時分の私がそうであったし、最近、読者の方からもこれについての質問を受けたので今回の説明には需要があるに違いないと判断する。
以下ではこのような変換の導き方と、なぜそのように書けるのかという考え方を説明する。 式だけ示されても困る人もいるだろうから、ついでに使い方も説明しておこう。
考え方
ある関数 A を x で偏微分しようと考える。 つまり記号で書けば、∂A/∂x を計算しようということである。 ところがそこでふと気付く。 何と、A は x の関数ではなくて、極座標 ( r, θ, φ ) で表された関数だった!
A ( r, θ, φ )
こんなときにはどうしよう。 あきらめるか? いや、ちゃんと方法がある。 そもそも A を x で偏微分するというのは x が微小変化したときの A の微小変化を x の微小変化で割るということなのであるから、例えば、r が微小変化したときの A の微小変化の割合と、 x だけ微小変化したときの r の微小変化の割合をかけてやれば、 x が微小変化したときの A の微小変化を間接的に求めたことになるのではないだろうか? 言葉にすると面倒な表現だが、数式で表すとシンプルであって、
ということである。 まあ、微分なんていうのは結局のところ、微小量同士の割り算に過ぎないということだ。 その証拠に上の式を約分すれば (∂A/∂x) になってしまう。 しかしこれだけでは正しくないので気を付けよう。 まだ考えが抜けている部分がある。 極座標の場合、x が変化すれば r だけでなく θ、φ も変化するのである。 すると、それに釣られて A はさらに変化することになる。 だから x が変化したときの A の変化の割合を知りたければ、これらの影響も足し合わせなければならない。 つまり、次のようになる。
さて、ここまで関数 A を使って説明してきたが、この話は別に A でなくともどんな関数でもいいわけで、この際、書くのを省いてしまうことにしよう。
ただし、A を省くと (∂/∂r) などは「微分演算子」になり、そのすぐ後に来るものを微分しなさいという意味になってしまうので、そのままの順序だと都合が悪い。 例えば第1項目の A を省いてそのままの順序にしておくと、この後に来る関数に (∂r/∂x) を掛けてからその全体を r で微分しなさいという意味にとられてしまう。 それで式の意味を誤解されないように各項内の順序を変えておいた。
テクニック
さあ、あとは、(∂r/∂x), (∂θ/∂x), (∂φ/∂x) の3つを計算すればいいだけだ。 そのために、( x , y , z ) と ( r , θ , φ ) の間の関係式が必要になる。 しかし、次の関係を使って微分を計算するのは少々面倒である。
これで計算できないこともない。 面倒だが逆関数の微分を使ってやればいいだけの話だ。 しかし別の方法もある。
というすっきりした関係式を使う方法だ。 どちらの方法が簡単かは場合によって異なる。
ここ