『第2設題』
数式には「Microsoft 数式3.0」を使用しています。
資料内容一部では表示されません。
1.Qの中のコーシー列 について、次の問いに答えよ。
(1) はQの中のコーシー列であることを証明せよ。
任意のε>0に対して、ある自然数Naが存在し、m,n>Naならば、
となる。
任意のε>0に対して、ある自然数Nbが存在し、m,n>Nbならば、
となる。
ここで、N=max{Na,Nb}とすると、m,n>Nに対して、
ゆえに、 はQの中のコーシー列である。
(2) はQの中のコーシー列であることを証明せよ。
(1)と同様にして、
よって、 は0に収束するので、Qの中のコーシー
『第2設題』
数式には「Microsoft 数式3.0」を使用しています。
資料内容一部では表示されません。
1.Qの中のコーシー列 について、次の問いに答えよ。
(1) はQの中のコーシー列であることを証明せよ。
任意のε>0に対して、ある自然数Naが存在し、m,n>Naならば、
となる。
任意のε>0に対して、ある自然数Nbが存在し、m,n>Nbならば、
となる。
ここで、N=max{Na,Nb}とすると、m,n>Nに対して、
ゆえに、 はQの中のコーシー列である。
(2) はQの中のコーシー列であることを証明せよ。
(1)と同様にして、
よって、 は0に収束するので、Qの中のコーシー...